
## WTQ06P2K0L-AH

#### P-Channel Enhancement Mode Power MOSFET

#### **Features**

- AEC-Q101 Qualified
- · Surface-mounted package
- Halogen and Antimony Free(HAF), RoHS compliant

# Gate Source



1.Gate 2.Drain 3.Source 4.Drain SOT-223 Plastic Package

#### **Applications**

- · High speed Switching
- Portable appliances
- · Battery management
- DC-DC converters for Telecom and Computer

#### Key Parameters

| Parameter                | Value                          | Unit |
|--------------------------|--------------------------------|------|
| -BV <sub>DSS</sub>       | 60                             | V    |
| D May                    | 200 @ -V <sub>GS</sub> = 10 V  | mΩ   |
| R <sub>DS(ON)</sub> Max  | 300 @ -V <sub>GS</sub> = 4.5 V | mΩ   |
| -V <sub>GS(th)</sub> typ | 1.8                            | V    |
| Q <sub>g</sub> typ       | 9 @ -V <sub>GS</sub> = 10 V    | nC   |

## Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

| Parameter                                              | Symbol           | Value         | Unit |
|--------------------------------------------------------|------------------|---------------|------|
| Drain-Source Voltage                                   | -V <sub>DS</sub> | 60            | V    |
| Gate-Source Voltage                                    | V <sub>GS</sub>  | ± 20          | V    |
| Drain Current $T_a = 25^{\circ}C$ $T_a = 100^{\circ}C$ | -I <sub>D</sub>  | 3<br>2        | А    |
| Peak Drain Current, Pulsed 1)                          | -I <sub>DM</sub> | 12            | Α    |
| Power Dissipation                                      | P <sub>D</sub>   | 1.25          | W    |
| Single-Pulse Avalanche Current                         | -l <sub>AS</sub> | 12            | А    |
| Single-Pulse Avalanche Energy 2)                       | E <sub>AS</sub>  | 7.2           | mJ   |
| Operating Junction and Storage Temperature Range       | Tj, Tstg         | - 55 to + 150 | °C   |

## **Thermal Characteristics**

| Parameter                                 | Symbol       | Max.           | Unit |      |
|-------------------------------------------|--------------|----------------|------|------|
| Thermal Resistance-Junction to Ambient 3) | t < 10 s     | D              | 60   | °C/W |
| Thermal Resistance-Junction to Ambient 3) | Steady State | $R_{	heta JA}$ | 100  | °C/W |

<sup>&</sup>lt;sup>1)</sup> Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature  $T_{J(MAX)}$  = 150°C.

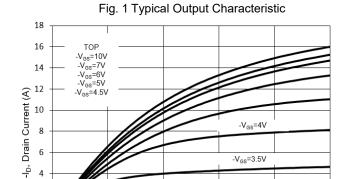


<sup>&</sup>lt;sup>2)</sup> Limited by  $T_{J(MAX)}$ , starting  $T_J$  = 25 °C, L = 0.1 mH,  $R_g$  = 25  $\Omega$ ,  $-I_D$  = 12 A,  $V_{GS}$  = 10 V.

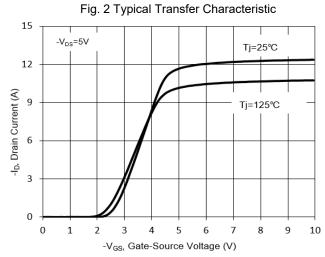
<sup>&</sup>lt;sup>3)</sup> Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

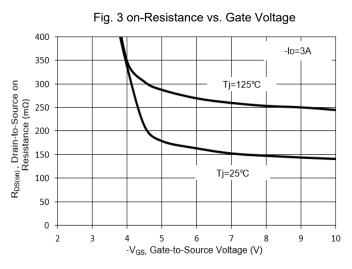
# WTQ06P2K0L-AH

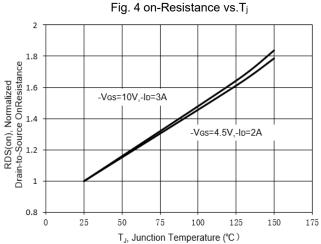
# Characteristics at T<sub>a</sub> = 25°C unless otherwise specified

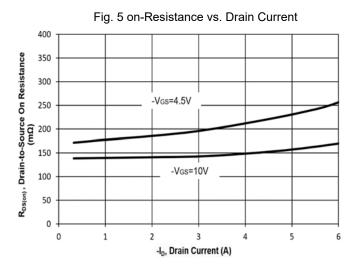

| Parameter                                                                                                                               | Symbol                | Min. | Тур.     | Max.       | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|----------|------------|------|
| STATIC PARAMETERS                                                                                                                       |                       |      |          |            |      |
| Drain-Source Breakdown Voltage<br>at -I <sub>D</sub> = 250 μA                                                                           | -V <sub>(BR)DSS</sub> | 60   | -        | -          | V    |
| Zero Gate Voltage Drain Current<br>at -V <sub>DS</sub> = 48 V                                                                           | -l <sub>DSS</sub>     | -    | -        | 1          | μΑ   |
| Gate-Source Leakage<br>at V <sub>GS</sub> = ± 20 V                                                                                      | lgss                  | -    | -        | ± 100      | nA   |
| Gate-Source Threshold Voltage at $V_{DS} = V_{GS}$ , $-I_D = 250 \mu A$                                                                 | -V <sub>GS(th)</sub>  | 1    | -        | 3          | V    |
| Drain-Source On-State Resistance at $-V_{GS} = 10 \text{ V}$ , $-I_D = 3 \text{ A}$ at $-V_{GS} = 4.5 \text{ V}$ , $-I_D = 2 \text{ A}$ | R <sub>DS(on)</sub>   | -    | 155<br>- | 200<br>300 | mΩ   |
| DYNAMIC PARAMETERS                                                                                                                      |                       |      |          |            |      |
| Gate Resistance at $-V_{DS} = 0$ , $V_{GS} = 0$ , $f = 1$ MHz                                                                           | R <sub>g</sub>        | -    | 18       | -          | Ω    |
| Input Capacitance at $-V_{DS} = 30 \text{ V}$ , $V_{GS} = 0 \text{ V}$ , $f = 1 \text{ MHz}$                                            | C <sub>iss</sub>      | -    | 589      | -          | pF   |
| Output Capacitance at $-V_{DS} = 30 \text{ V}$ , $V_{GS} = 0 \text{ V}$ , $f = 1 \text{ MHz}$                                           | Coss                  | -    | 35       | -          | pF   |
| Reverse Transfer Capacitance at $-V_{DS} = 30 \text{ V}$ , $V_{GS} = 0 \text{ V}$ , $f = 1 \text{ MHz}$                                 | C <sub>rss</sub>      | -    | 8        | -          | pF   |
| Total Gate Charge at $-V_{DS} = 20 \text{ V}$ , $-V_{GS} = 10 \text{ V}$ , $-I_{D} = 1.5 \text{ A}$                                     | $Q_g$                 | -    | 9        | -          | nC   |
| Gate-Source Charge at $-V_{DS} = 20 \text{ V}$ , $-V_{GS} = 10 \text{ V}$ , $-I_D = 1.5 \text{ A}$                                      | Q <sub>gs</sub>       | -    | 2        | -          | nC   |
| Gate-Drain Charge at $-V_{DS} = 20 \text{ V}$ , $-V_{GS} = 10 \text{ V}$ , $-I_D = 1.5 \text{ A}$                                       | Q <sub>gd</sub>       | -    | 1.3      | -          | nC   |
| Turn-On Delay Time at $-V_{DD}$ = 15 V, $-V_{GS}$ = 10 V, $-I_D$ = 1 A, $R_g$ = 24 $\Omega$                                             | t <sub>d(on)</sub>    | -    | 18       | -          | ns   |
| Turn-On Rise Time at -V <sub>DD</sub> = 15 V, -V <sub>GS</sub> = 10 V, -I <sub>D</sub> = 1 A, $R_g$ = 24 $\Omega$                       | <b>t</b> r            | -    | 14       | -          | ns   |
| Turn-Off Delay Time at -V <sub>DD</sub> = 15 V, -V <sub>GS</sub> = 10 V, -I <sub>D</sub> = 1 A, $R_g$ = 24 $\Omega$                     | t <sub>d(off)</sub>   | -    | 28       | -          | ns   |
| Turn-Off Fall Time at -V <sub>DD</sub> = 15 V, -V <sub>GS</sub> = 10 V, -I <sub>D</sub> = 1 A, R <sub>g</sub> = 24 $\Omega$             | t <sub>f</sub>        | -    | 7        | -          | ns   |
| Body-Diode PARAMETERS                                                                                                                   |                       |      |          |            |      |
| Body Diode Voltage<br>at -l <sub>s</sub> = 1 A                                                                                          | -V <sub>SD</sub>      | -    | -        | 1          | V    |
| Body-Diode Continuous Current                                                                                                           | -ls                   | -    | -        | 3          | Α    |
| Body-Diode Continuous Current, Pulsed                                                                                                   | -I <sub>SM</sub>      | -    | -        | 12         | Α    |
| Body Diode Reverse Recovery Time at -ls = 1.5 A, di/dt = 100 A / µs                                                                     | t <sub>rr</sub>       | -    | 12.4     | -          | ns   |
| Body Diode Reverse Recovery Charge at -I <sub>s</sub> = 1.5 A, di/dt = 100 A / µs                                                       | Qrr                   | -    | 8        | -          | nC   |

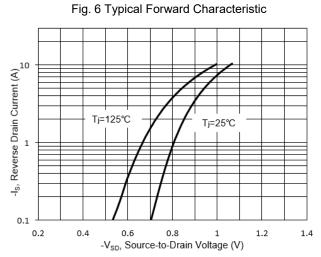



0

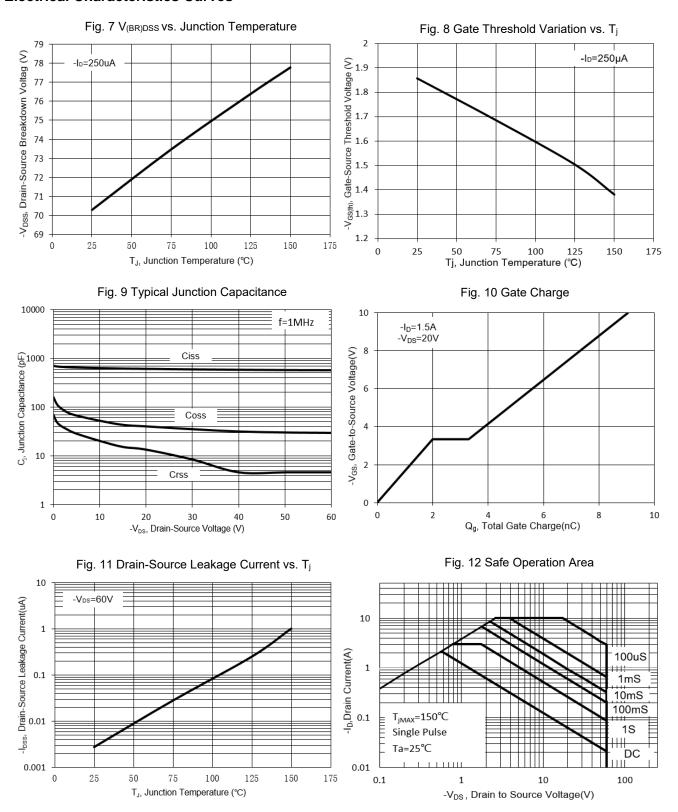

0


## **Electrical Characteristics Curves**





-V<sub>DS</sub>, Drain-to-Source Voltage (V)












## **Electrical Characteristics Curves**





#### **Electrical Characteristics Curves**

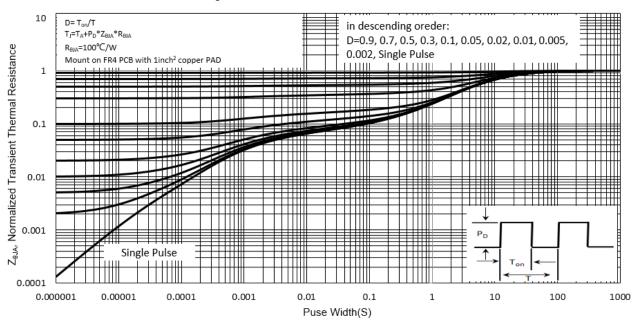



Fig. 13 Transient Thermal Resistance  $(Z_{\theta JA})$ 



# WTQ06P2K0L-AH

## **Test Circuits**

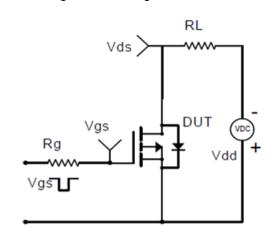



Fig.1-1 Switching times test circuit

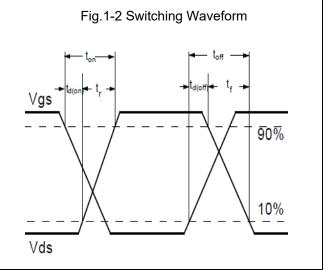



Fig.2-1 Gate charge test circuit

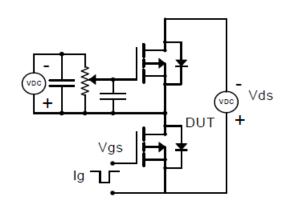



Fig.2-2 Gate charge waveform

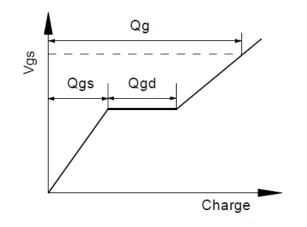
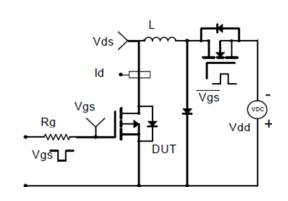
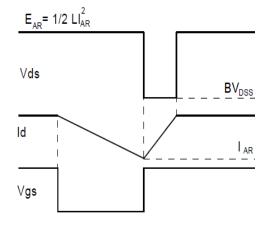
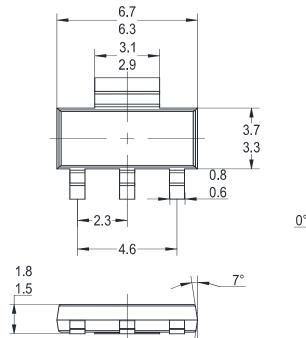
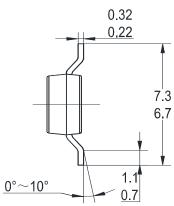
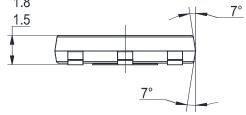



Fig.3-1 Avalanche test circuit

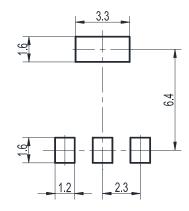





Fig.3-2 Avalanche waveform




# Package Outline (Dimensions in mm)


**SOT-223** 







## **Recommended Soldering Footprint**



Packing information

| - 7 |                         | 9          |         |               |      |                           |                           |
|-----|-------------------------|------------|---------|---------------|------|---------------------------|---------------------------|
|     | Package Tape Width (mm) | Tape Width | Pit     | tch           | Reel | Size                      | Por Pool Pooking Quantity |
|     |                         | mm         | inch    | mm            | inch | Per Reel Packing Quantity |                           |
|     | SOT-223                 | 12         | 8 ± 0.1 | 0.315 ± 0.004 | 330  | 13                        | 3,000                     |

# **Marking information**

" TQ06P2K0L " = Part No.

" \*\*\*\*\* " = Date Code Marking

Font type: Arial





#### IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

