
N-Channel Enhancement Mode MOSFET

Features

- AEC-Q101 Qualified
- · Low threshold drive
- Halogen and Antimony Free(HAF), RoHS compliant

1.Gate 2.Drain 3.Source 4.Drain SOT-223 Plastic Package

Applications

- · Switching applications
- DC-DC converters for Telecom and Computer

Key Parameters

Parameter	Value	Unit
BV _{DSS}	60	V
R _{DS(ON)} Max	78 @ V _{GS} = 10 V	m0
	100 @ V _{GS} = 4.5 V	mΩ
V _{GS(th)} typ	1.7	V
Q _g typ	4.3 @ V _{GS} = 4.5 V	nC

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	V _G s	± 20	V
Drain Current $T_c = 25^{\circ}C$ $T_c = 100^{\circ}C$	I _D	4 2.9	А
Peak Drain Current, Pulsed 1)	I _{DM}	16	Α
Single-Pulse Avalanche Current	las	5.4	А
Single-Pulse Avalanche Energy 2)	Eas	1.5	mJ
Power Dissipation	P _D	1.25	W
Operating Junction and Storage Temperature Range	T_{j},T_{stg}	- 55 to + 150	°C

Thermal Characteristics

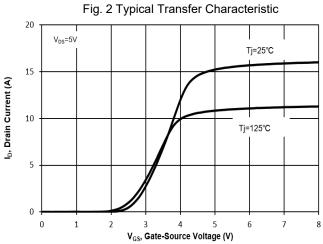
Parameter	Symbol	Max.	Unit	
Thermal Resistance - Junction to Case		Rejc	20	°C/W
Thermal Resistance - Junction to Ambient 3)	Steady State	RθJA	100	°C/W

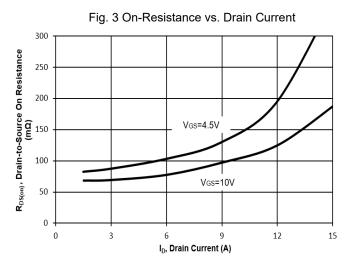
¹⁾ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ = 150°C.

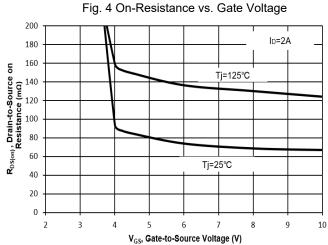
 $^{^{2)}}$ Limited by T_{J(MAX)}, starting T_J = 25 °C, L = 0.1 mH, R_g = 25 $\Omega,$ I_D = 5.4 A, V_{GS} = 10 V.

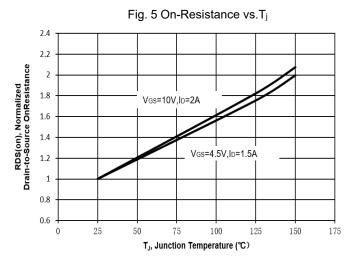
³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

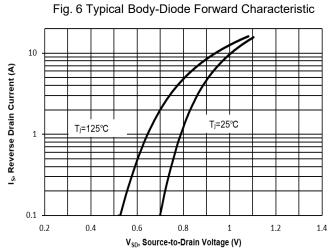

WTQ06N750LS-AH


Characteristics at Ta = 25°C unless otherwise specified


Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I _D = 250 μA	BV _{DSS}	60	-	-	V
Drain-Source Leakage Current at V _{DS} = 48 V	I _{DSS}	-	-	1	μΑ
Gate Leakage Current at V _{GS} = ± 20 V	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V _{DS} = V _{GS} , I _D = 250 μA	V _{GS(th)}	1.2	-	2.5	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 2 A at V_{GS} = 4.5 V, I_D = 1.5 A	R _{DS(on)}	- -	68 -	78 100	mΩ
DYNAMIC PARAMETERS					
Gate Resistance at V _{DS} = 0 V, V _{GS} = 0 V, f = 1 MHz	Rg	-	0.9	-	Ω
Forward Transconductance at $V_{DS} = 5 \text{ V}$, $I_D = 2 \text{ A}$	g FS	-	3.9	-	S
Input Capacitance at $V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	C _{iss}	-	446.6	-	pF
Output Capacitance at $V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Coss	-	26	-	pF
Reverse Transfer Capacitance at $V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Crss	-	5	-	pF
Gate Charge Total at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 3 A at V_{DS} = 30 V, V_{GS} = 4.5 V, I_D = 3 A	Qg	- -	8.1 4.3	- -	nC
Gate to Source Charge at $V_{DS} = 30 \text{ V}$, $V_{GS} = 10 \text{ V}$, $I_D = 3 \text{ A}$	Q _{gs}	-	1.9	-	nC
Gate to Drain Charge at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 3 A	Q_{gd}	-	1.9	-	nC
Turn-On Delay Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 3 A, R_g = 4.7 Ω	t _{d(on)}	-	7	-	ns
Turn-On Rise Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 3 A, R_g = 4.7 Ω	t _r	-	3	-	ns
Turn-Off Delay Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 3 A, R_g = 4.7 Ω	t _{d(off)}	-	6	-	ns
Turn-Off Fall Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 3 A, R_g = 4.7 Ω	t _f	-	2	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at Is = 4 A, V _{GS} = 0 V	V _{SD}	-	-	1.2	V
Body-Diode Continuous Current	ls	-	-	4	Α
Body-Diode Continuous Current, Pulsed	Ism	-	-	16	Α
Body Diode Reverse Recovery Time at I _S = 4 A, di/dt = 100 A / μs	t _{rr}	-	8.4	-	ns
Body Diode Reverse Recovery Charge at I _S = 4 A, di/dt = 100 A / μs	Q _{rr}		4.6	-	nC




Electrical Characteristics Curves



Electrical Characteristics Curves

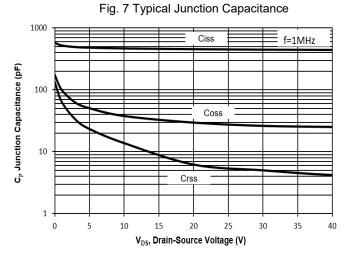


Fig. 8 Drain-Source Leakage Current vs. Tj

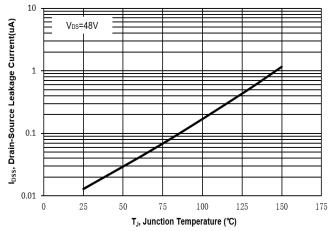


Fig. 9 V_{(BR)DSS} vs. Junction Temperature

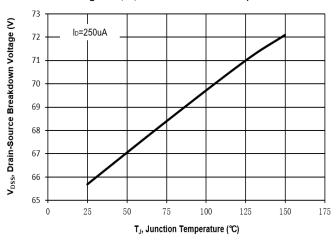


Fig. 10 Gate Threshold Variation vs. Tj

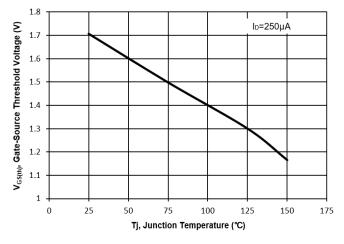


Fig. 11 Gate Charge

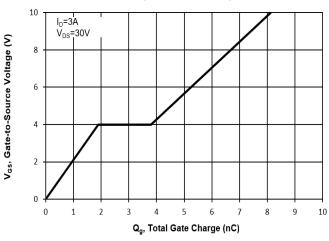
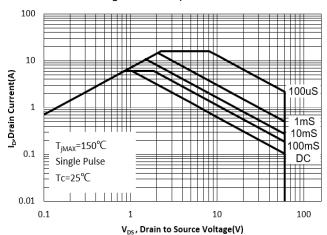



Fig. 12 Safe Operation Area

Electrical Characteristics Curves

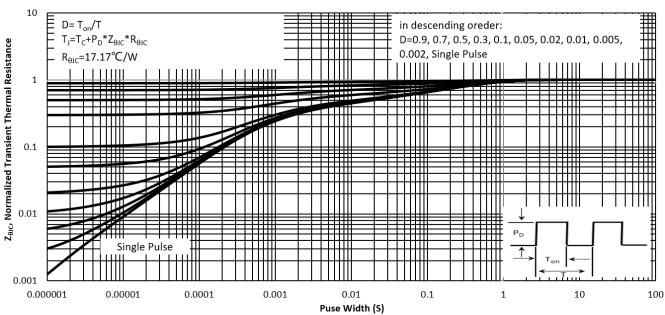
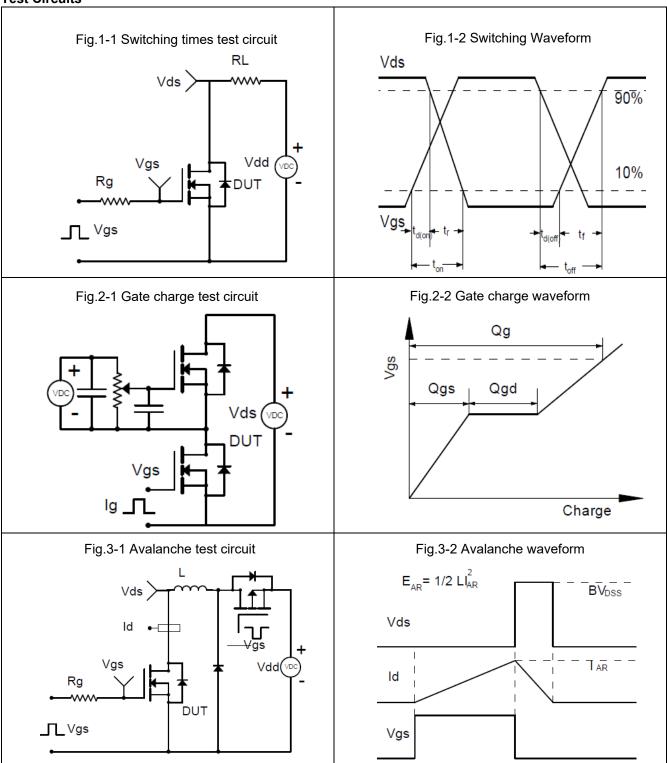
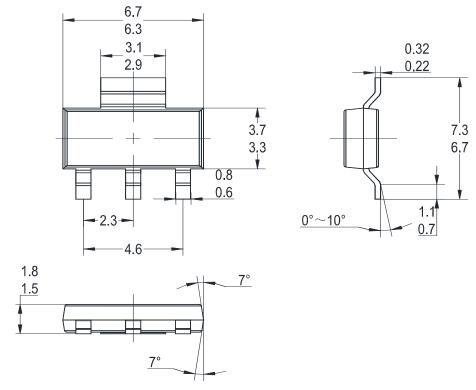
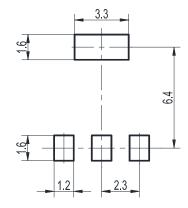



Fig.13 Normalized Maximum Transient Thermal Impedance(zeuc)

WTQ06N750LS-AH


Test Circuits



Package Outline (Dimensions in mm)

SOT-223

Recommended Soldering Footprint

Packing information

. dotting information									
Dookogo	Tape Width	Pitch		Reel Size		Der Deel Deeking Quentity			
Package	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity			
SOT-223	12	8 ± 0.1	0.315 ± 0.004	330	13	3,000			

Marking information

- " TQ06N750LS " = Part No.
- " ***** " = Date Code Marking

Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

