
N-Channel Enhancement Mode MOSFET

Features

- AEC-Q101 Qualified
- Low R_{DS(on)} to minimize conduction losses
- · Low capacitance to minimize driver losses
- Halogen and Antimony Free(HAF), RoHS compliant

 Source 2. Source 3. Source 4. Gate
Drain 6. Drain 7. Drain 8. Drain DFN5060 Plastic Package

Application

• Synchronous buck converter

Key Parameters

Parameter	Value	Unit		
BV _{DSS}	40	V		
Prevent Mov	3.3 @ V _{GS} = 10 V	mΩ		
R _{DS(ON)} Max	4.9 @ V _{GS} = 4.5 V	mΩ		
V _{GS(th)} typ	1.5	V		
Q _g typ	45 @ V _{GS} = 10 V	nC		

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	40	V	
Gate-Source Voltage	V _{GS}	± 20	V	
Continuous Drain Current	$T_c = 25^{\circ}C$ $T_c = 100^{\circ}C$	I _D	75 47	А
Peak Drain Current 1)		I _{DM}	420	Α
Avalanche Current		las	40	Α
Single Pulse Avalanche Energy ²⁾		E _{AS}	80	mJ
Power Dissipation	$T_c = 25^{\circ}C$ $T_c = 100^{\circ}C$	P _D	27.8 11	W
Operating Junction and Storage Temperature Rang	T _J , T _{stg}	- 55 to + 150	°C	

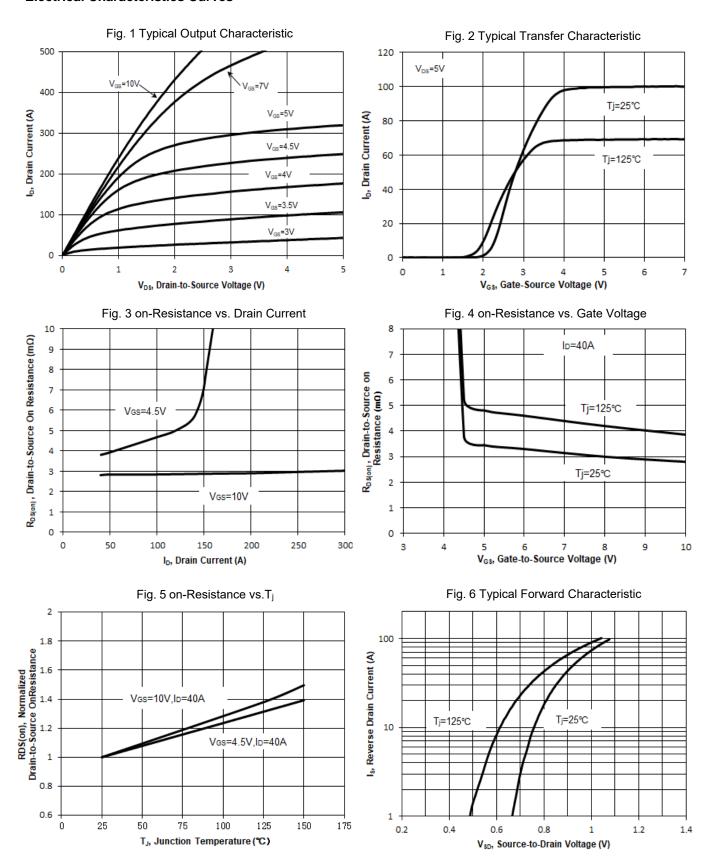
Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	R _{eJC}	4.5	°C/W
Thermal Resistance from Junction to Ambient 3) Steady State	Reja	45	°C/W

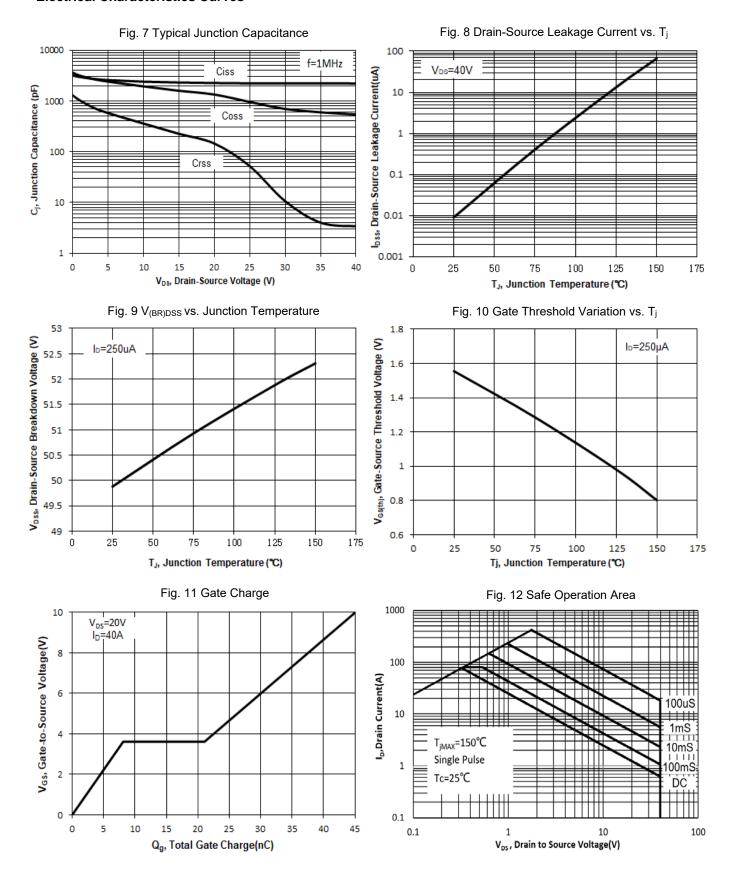
¹⁾ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ = 150°C.

 $^{^{2)}}$ Limited by $T_{J(MAX)},$ starting T_J = 25 °C, L = 0.1 mH, R_g = 25 $\Omega,\,I_D$ = 40 A, V_{GS} = 10 V.

³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.


WTM504N031L-AH

Characteristics at Ta = 25°C unless otherwise specified


Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS	1		•	•	
Drain-Source Breakdown Voltage at I _D = 250 μA	BV _{DSS}	40	-	-	V
Drain-Source Leakage Current at V _{DS} = 40 V	I _{DSS}	-	-	1	μΑ
Gate Leakage Current at V _{GS} = ± 20 V	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 μ A	V _{GS(th)}	1.2	-	2.2	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 40 A at V_{GS} = 4.5 V, I_D = 40 A	R _{DS(on)}	- -	2.8	3.3 4.9	mΩ
DYNAMIC PARAMETERS					
Gate resistance at V _{DS} = 0 V, f = 1 MHz	Rg	-	2.2	-	Ω
Forward Transconductance at V_{DS} = 5 V, I_D = 40 A	g fs	-	25	-	S
Input Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 25 \text{ V}$, $f = 1 \text{ MHz}$	Ciss	-	2225	-	pF
Output Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 25 \text{ V}$, $f = 1 \text{ MHz}$	Coss	-	956	-	pF
Reverse Transfer Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 25 \text{ V}$, $f = 1 \text{ MHz}$	Crss	-	52	-	pF
Gate charge total at V_{DS} = 20 V, I_D = 40 A, V_{GS} = 10 V at V_{DS} = 20 V, I_D = 40 A, V_{GS} = 4.5 V	Qg	- -	45 23	- -	nC
Gate to Source Charge at V_{DS} = 20 V, I_D = 40 A, V_{GS} = 4.5 V	Q _{gs}	-	8	-	nC
Gate to Drain Charge at V_{DS} = 20 V, I_D = 40 A, V_{GS} = 4.5 V	Q_{gd}	-	13	-	nC
Turn-On Delay Time at V_{DS} = 20 V, I_D = 40 A, V_{GS} = 4.5 V, R_g = 4.7 Ω	t _{d(on)}	-	29	-	nS
Turn-On Rise Time at V_{DS} = 20 V, I_D = 40 A, V_{GS} = 4.5 V, R_g = 4.7 Ω	t _r	-	107	-	nS
Turn-Off Delay Time at V_{DS} = 20 V, I_D = 40 A, V_{GS} = 4.5 V, R_g = 4.7 Ω	$t_{d(off)}$	-	22	-	nS
Turn-Off Fall Time at V_{DS} = 20 V, I_D = 40 A, V_{GS} = 4.5 V, R_g = 4.7 Ω	t _f	-	37	-	nS
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at $I_S = 40 \text{ A}$, $V_{GS} = 0 \text{ V}$	V _{SD}	-	-	1.2	V
Body-Diode Continuous Current	ls	-	-	75	Α
Body-Diode Continuous Current, Pulsed	Ism		_	420	Α
Body Diode Reverse Recovery Time at I_S = 40 A, di/dt = 100 A / μ s	t _{rr}	-	30	-	nS
Body Diode Reverse Recovery Charge at I_S = 40 A, di/dt = 100 A / μ s	Qrr	-	17	-	nC

Electrical Characteristics Curves

Electrical Characteristics Curves

Electrical Characteristics Curves

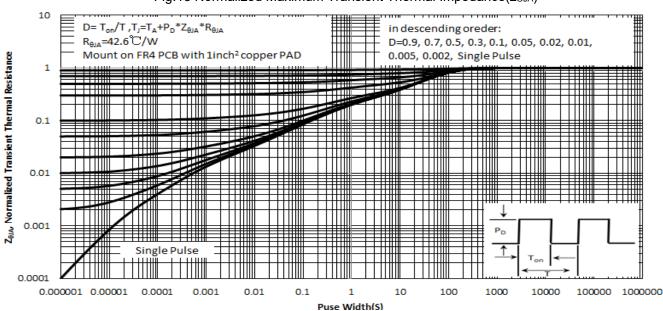
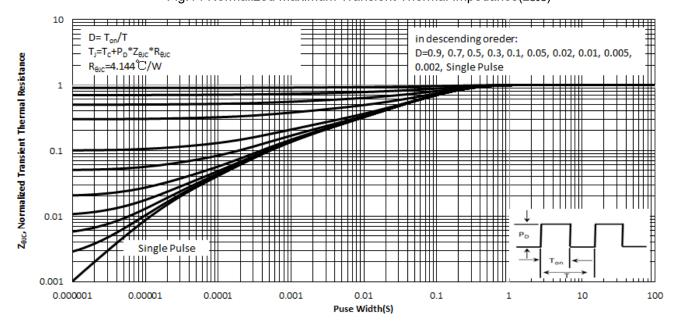
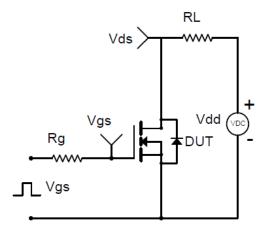



Fig.13 Normalized Maximum Transient Thermal Impedance(zeja)



WTM504N031L-AH

Test Circuits

Fig.1-1 Switching times test circuit

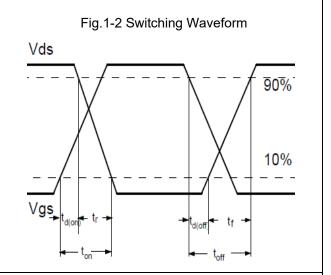


Fig.2-1 Gate charge test circuit

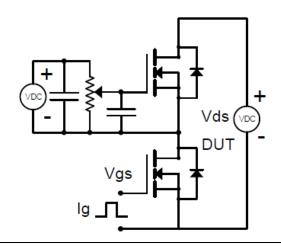


Fig.2-2 Gate charge waveform

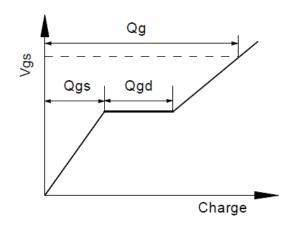
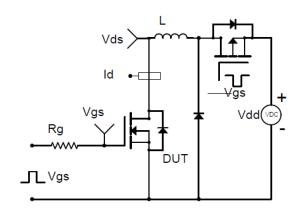
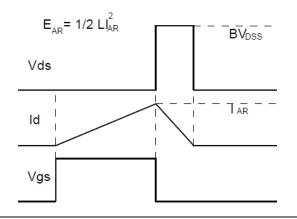
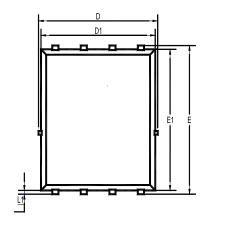
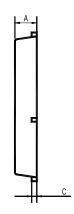
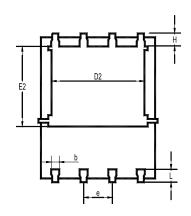


Fig.3-1 Avalanche test circuit

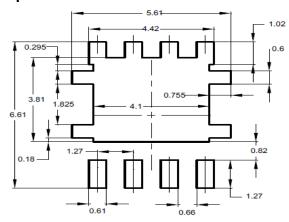

Fig.3-2 Avalanche waveform





Package Outline Dimensions (Units: mm)

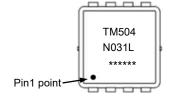
DFN5060



UNIT	Α	b	С	D	D1	D2	E	E1	E2	е	L	L1	Н
100 100	1.12	0.51	0.34	5.26	5.1	4. 5	6.25	6	3.66	1.37	0.71	0.2	0.71
mm	0.9	0.33	0.11	4.7	4.7	3.56	5.75	5.6	3.18	1.17	0.35	0.06	0.35

Recommended Soldering Footprint

Packing information


Package	Tape Width	Pit	tch	Reel Size		Per Reel Packing Quantity
rackage	(mm)	mm	inch	mm	inch	Fel Reel Facking Quantity
DFN5060	12	8 ± 0.1	0.315 ± 0.004	330	13	3,000

Marking information

" TM504N031L " = Part No.

" ***** " = Date Code Marking

Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

