
N-Channel Enhancement Mode MOSFET

Features

- AEC-Q101 Qualified
- Surface-mounted package
- Halogen and Antimony Free(HAF), RoHS compliant

 Source 2. Source 3. Source 4. Gate
 Drain 6. Drain 7. Drain 8. Drain DFN3030 Plastic Package

Applications

• synchronous buck converter

Key Parameters

Parameter	Value	Unit					
BV _{DSS}	40	V					
P May	6.5 @ V _{GS} = 10 V	mΩ					
R _{DS(ON)} Max	9 @ V _{GS} = 4.5 V	11122					
V _{GS(th)} typ	1.4	V					
Q _g typ	59 @ V _{GS} = 10 V	nC					

Absolute Maximum Ratings(at T_a = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	40	V
Gate-Source Voltage	V_{GS}	± 20	V
Drain Current - Continuous $T_c = 25^{\circ}C$ $T_c = 100^{\circ}C$, I _D	40 31	Α
Peak Drain Current, Pulsed 1)	I _{DM}	140	Α
Single-Pulse Avalanche Current	I _{AS}	32.9	Α
Single-Pulse Avalanche Energy 2)	E _{AS}	54.1	mJ
Power Dissipation T _c = 25°C	P _D	36.7	W
Operating Junction and Storage Temperature Range	T _j , T _{stg}	- 55 to + 150	°C

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	$R_{ heta JC}$	3.4	°C/W
Thermal Resistance from Junction to Ambient 3)	$R_{ hetaJA}$	75	°C/W

¹⁾ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ = 150°C.

³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

 $^{^{2)}}$ Limited by $T_{J(MAX)},$ starting T_J = 25 °C, L = 0.1 mH, R_g = 25 $\Omega,$ I_D = 32.9 A, V_{GS} = 10 V.

WTM304N065L-AH

Characteristics at T_a = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at $I_D = 250 \mu A$	BV _{DSS}	40	-	-	V
Drain-Source Leakage Current at V_{DS} = 32 V	I _{DSS}	-	-	1	μΑ
Gate-Source Leakage Current at $V_{GS} = \pm 20 \text{ V}$	I _{GSS}	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 μA	$V_{GS(th)}$	1	-	2.5	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 10 A at V_{GS} = 4.5 V, I_D = 5 A	R _{DS(on)}	-	5.1 -	6.5 9	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at $V_{DS} = 5 \text{ V}$, $I_D = 5 \text{ A}$	g fs	-	27	-	S
Gate Resistance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	R_g	-	0.4	-	Ω
Input Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 25 \text{ V}$, $f = 1 \text{ MHz}$	C _{iss}	-	3303	-	pF
Output Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 25 \text{ V}$, $f = 1 \text{ MHz}$	C _{oss}	-	223	-	pF
Reverse Transfer Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 25 \text{ V}$, $f = 1 \text{ MHz}$	C _{rss}	-	196	-	pF
Gate Charge Total at V_{DS} = 20 V, V_{GS} = 10 V, I_D = 10 A at V_{DS} = 20 V, V_{GS} = 4.5 V, I_D = 10 A	Qg		59 29	- -	nC
Gate to Source Charge at V_{DS} = 20 V, V_{GS} = 10 V, I_D = 10 A	Q_{gs}	-	7.6	-	nC
Gate to Drain Charge at V_{DS} = 20 V, V_{GS} = 10 V, I_{D} = 10 A	Q_{gd}	-	10.2	-	nC
Turn-On Delay Time at V_{GS} = 10 V, V_{DS} = 15 V, I_D = 1 A, R_g = 3.3 Ω	t _{d(on)}	-	15.2	-	ns
Turn-On Rise Time at V_{GS} = 10 V, V_{DS} = 15 V, I_D = 1 A, R_g = 3.3 Ω	t _r	-	8.8	-	ns
Turn-Off Delay Time at V_{GS} = 10 V, V_{DS} = 15 V, I_D = 1 A, R_g = 3.3 Ω	$t_{d(off)}$	-	74	-	ns
Turn-Off Fall Time at V_{GS} = 10 V, V_{DS} = 15 V, I_D = 1 A, R_g = 3.3 Ω	t _f	-	7	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at $I_S = 1$ A, $V_{GS} = 0$ V	V _{SD}	1	-	1	V
Body-Diode Continuous Current	I _S	-	-	40	Α
Body-Diode Continuous Current, Pulsed	I _{SM}	-	-	140	Α

Electrical Characteristics Curves

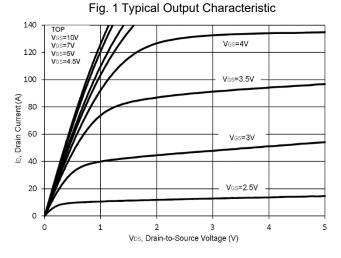


Fig. 2 Typical Transfer Characteristic

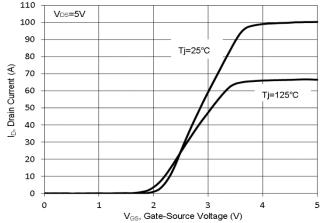


Fig. 3 on-Resistance vs. Gate Voltage

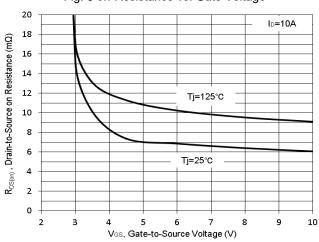


Fig. 4 on-Resistance vs.T_i

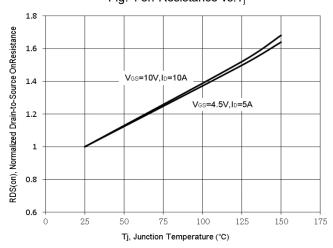


Fig. 5 on-Resistance vs. Drain Current

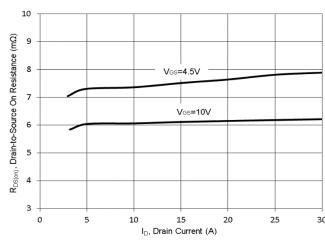
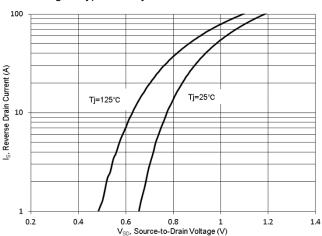
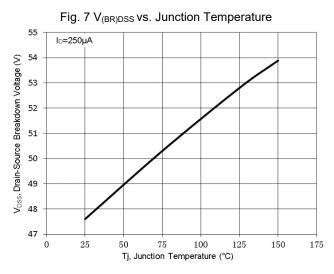




Fig. 6 Typical Body-Diode Forward Characteristic

Electrical Characteristics Curves

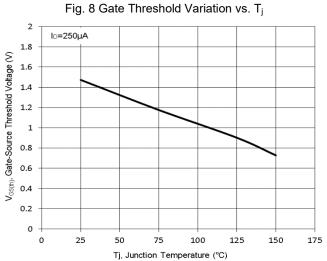


Fig. 9 Typical Junction Capacitance

Ciss

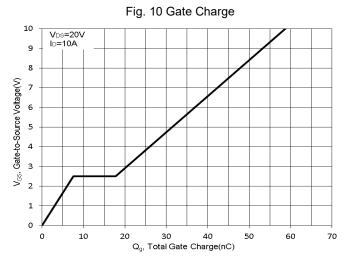
Ciss

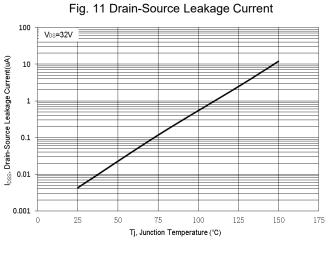
Coss

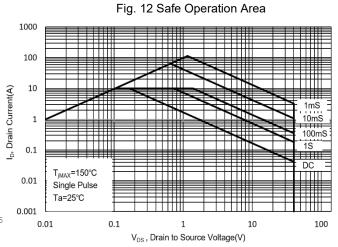
Crss

Coss

Crss

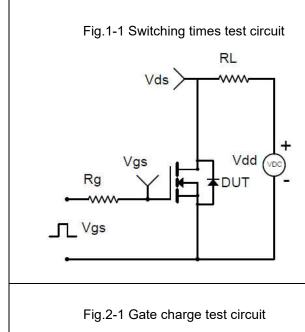

Coss

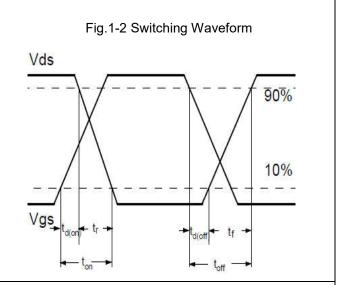

Crss


Coss

Crss

Coss





WTM304N065L-AH

Test Circuits

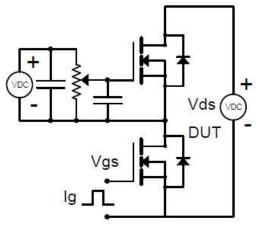


Fig.2-2 Gate charge waveform

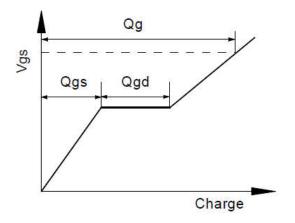
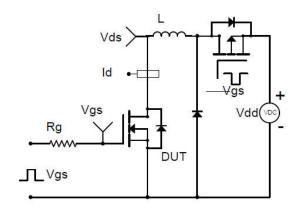
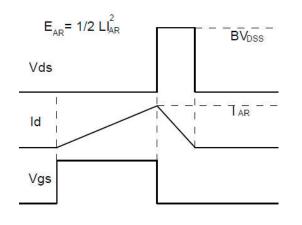
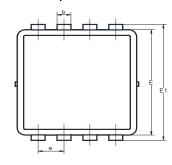
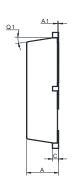
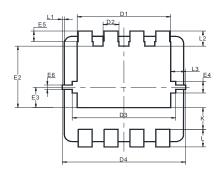


Fig.3-1 Avalanche test circuit

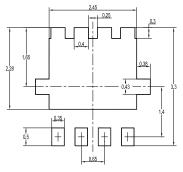

Fig.3-2 Avalanche waveform





Package Outline Dimensions (Units: mm)

DFN3030

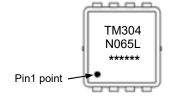


UNIT	Α	A1	b	С	D1	D2	D3	D4	Е	E1	E2	E3	E4
	0.9	0.05	0.35	0.25	2.6	0.5	2.7	3.2	3.1	3.3	1.85	0.68	0.43
mm	0.7	0	0.24	0.1	2.4	0.3	2.5	3	2.9	3.1	1.65	0.48	0.23

UNIT	E5	E6	е	K	L	L1	L2	L3	θ1
	0.4	0.25	0.7	0.72	0.5	0.1	0.53	0.475	12°
mm	0.2	0.15	0.6	0.52	0.3	0	0.33	0.275	0°

Recommended Soldering Footprint

Packing information


Dookogo	Tape Width	Tape Width Pitch		Reel	Size	Per Reel Packing	
Package	(mm)	mm	inch	mm	inch	Quantity	
DFN3030	12	8 ± 0.1	0.315 ± 0.004	330	13	5,000	

Marking information

" TM304N065L " = Part No.

" ***** " = Date Code Marking

Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

