
WDR10N170LS-HAF

N-Channel Enhancement Mode MOSFET

Features

- Low R_{DS(ON)}
- Fully Characterized Capacitance and Avalanche
- Halogen and Antimony Free(HAF), RoHS compliant

1.Gate 2.Drain 3.Source TO-252 Plastic Package

Application

- Synchronous Rectification
- BLDC Motor drive applications
- Battery powered circuits

Key Parameters

Parameter	Value	Unit	
BV _{DSS}	100	V	
R _{DS(ON)} Max	17 @ V _{GS} = 10 V	mΟ	
	23 @ V _{GS} = 4.5 V	11122	
V _{GS(th)} typ	2	V	
Q _g typ	22 @ V _{GS} = 10 V	nC	

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V_{DS}	100	V	
Gate-Source Voltage	V _G S	± 20	V	
Continuous Drain Current	I_D	35 22	Α	
Peak Drain Current, Pulsed 1)		I_{DM}	130	А
Avalanche Current	las	24	Α	
Single Pulse Avalanche Energy 2)		E _{AS}	28.8	mJ
Power Dissipation	T _c = 25°C	P _{tot}	34.7	W
Power Dissipation	T _a = 25°C	P _{tot}	2.5	W
Operating Junction and Storage Temperature Rang	T_J , T_{stg}	- 55 to + 150	$^{\circ}$ C	

Thermal Characteristics

Parameter	Symbol	Max.	Unit				
Thermal Resistance from Junction to Case	R _{θJC}	3.6	°C/W				
Thermal Resistance from Junction to Ambient 3)	Reja	50	°C/W				

¹⁾ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ = 150°C.

 $^{^{2)}}$ Limited by $T_{J(MAX)},$ starting T_J = 25 °C, L = 0.1 mH, R_g = 25 $\Omega,\,I_D$ = 24 A, V_{GS} = 10 V.

³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

WDR10N170LS-HAF

Characteristics at T_a = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS	1		•	•	
Drain-Source Breakdown Voltage at I _D = 250 μA	BV _{DSS}	100	-	-	V
Drain-Source Leakage Current at V _{DS} = 100 V	I _{DSS}	-	-	1	μA
Gate Leakage Current at V _{GS} = ± 20 V	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 μ A	V _{GS(th)}	1.2	-	2.5	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 7 A at V_{GS} = 4.5 V, I_D = 5 A	R _{DS(on)}	- -	14 18.7	17 23	mΩ
DYNAMIC PARAMETERS					
Gate resistance at $V_{DS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	R _g	-	0.6	-	Ω
Forward Transconductance at V_{DS} = 5 V, I_D = 7 A	g fs	-	16	-	S
Input Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 40 \text{ V}$, $f = 1 \text{ MHz}$	C _{iss}	-	1093	-	pF
Output Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 40 \text{ V}$, $f = 1 \text{ MHz}$	Coss	-	538	-	pF
Reverse Transfer Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 40 \text{ V}$, $f = 1 \text{ MHz}$	C _{rss}	-	69	-	pF
Gate charge total at V_{DS} = 50 V, I_D = 7 A, V_{GS} = 10 V at V_{DS} = 50 V, I_D = 7 A, V_{GS} = 4.5V	Qg	- -	22 12	- -	nC
Gate to Source Charge at V_{DS} = 50 V, I_D = 7 A, V_{GS} = 10 V	Q _{gs}	-	3	-	nC
Gate to Drain Charge at V_{DS} = 50 V, I_D = 7 A, V_{GS} = 10 V	Q_{gd}	-	6	-	nC
Turn-On Delay Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 7 A, R_g = 4.7 Ω	$t_{d(on)}$	-	14	-	nS
Turn-On Rise Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 7 A, R_g = 4.7 Ω	t _r	-	8	-	nS
Turn-Off Delay Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 7 A, R_g = 4.7 Ω	$t_{\text{d(off)}}$	-	14	-	nS
Turn-Off Fall Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 7 A, R_g = 4.7 Ω	t _f	-	5	-	nS
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at Is = 1 A, V _{GS} = 0 V	V _{SD}	-	-	1	V
Body-Diode Continuous Current	Is	-	-	35	Α
Body-Diode Continuous Current, Pulsed	Isм	-	-	130	А
Body Diode Reverse Recovery Time at I _S = 7 A, di/dt = 100 A / µs	t _{rr}	-	37	-	nS
Body Diode Reverse Recovery Charge at Is = 7 A, di/dt = 100 A / µs	Qrr	-	32	-	nC

Electrical Characteristics Curves

Fig. 1 Typical Output Characteristic

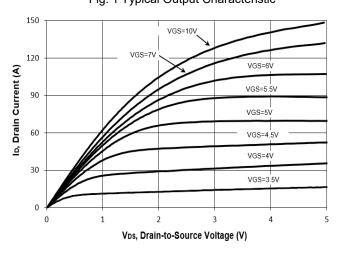


Fig. 2 Typical Transfer Characteristic

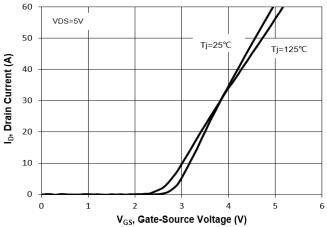


Fig. 3 on-Resistance vs. Gate Voltage

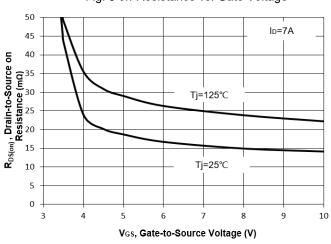


Fig. 4 on-Resistance vs.Ti

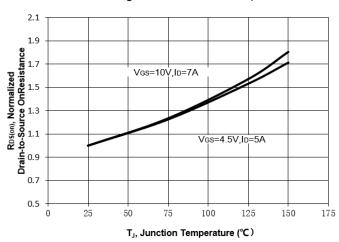


Fig. 5 On-Resistance vs. Drain Current

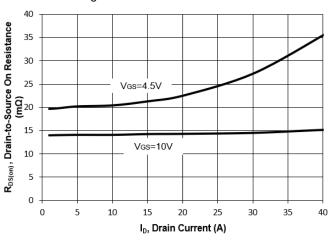
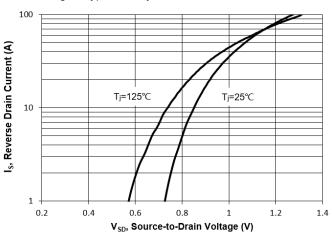
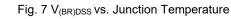




Fig. 6 Typical Body-Diode Forward Characteristic

Electrical Characteristics Curves

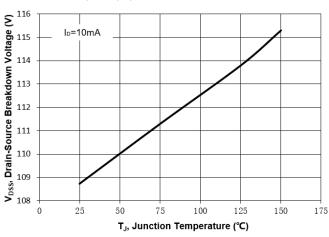


Fig. 8 Gate Threshold Variation vs. T_j

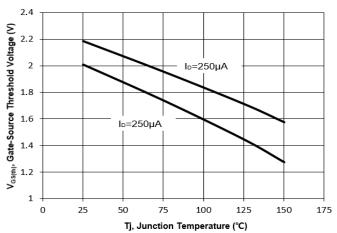


Fig. 9 Typical Junction Capacitance

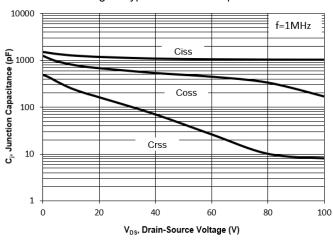


Fig. 10 Gate Charge

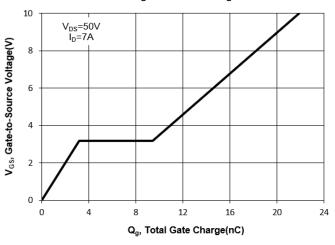


Fig. 11 Drain-Source Leakage Current vs. Ti

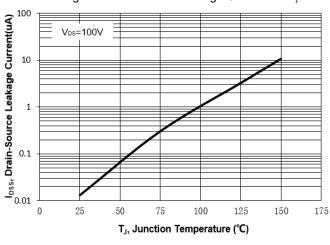
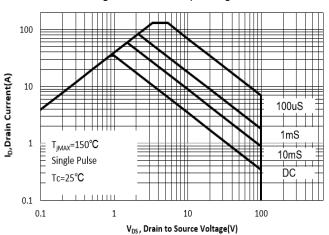



Fig.12 SOA, Safe Operating Area

Electrical Characteristics Curves

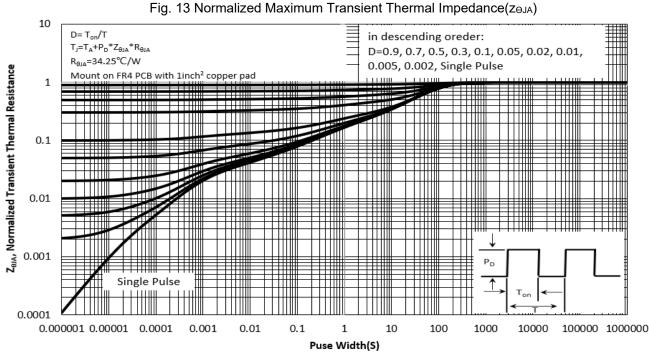
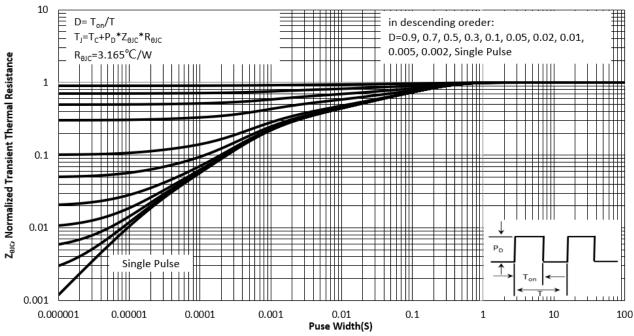
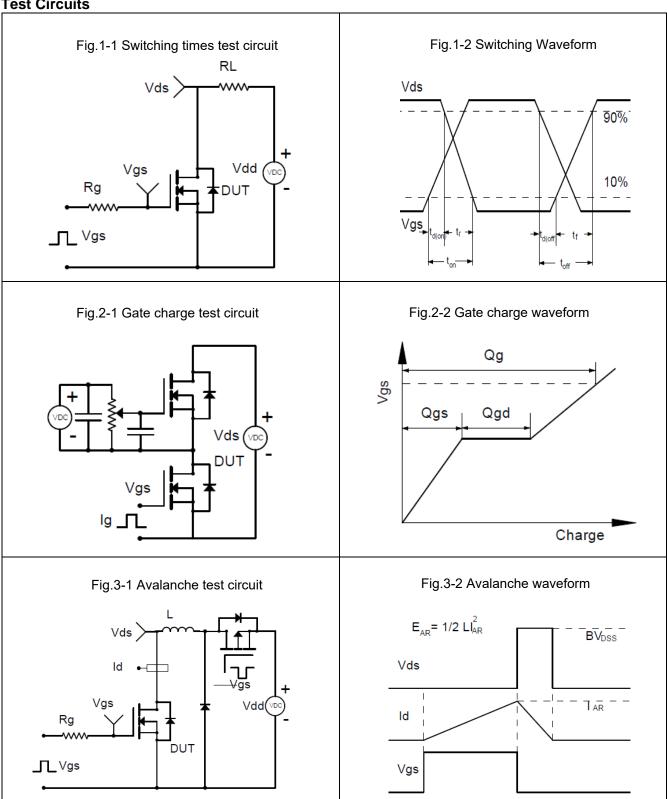
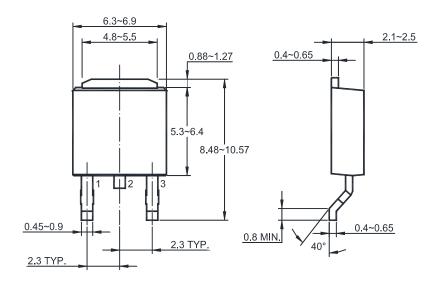
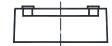
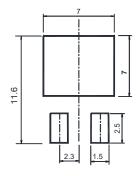




Fig. 14 Normalized Maximum Transient Thermal Impedance(zeuc)

WDR10N170LS-HAF


Test Circuits




Package Outline (Dimensions in mm)

TO-252

Recommended Soldering Footprint

Packing information

i doking iiiio	IIIIatioii					
Package Tape Width (mm)	Pitch		Reel Size		Per Reel Packing Quantity	
	(mm)	mm	inch	mm	inch	Fel Neel Fackling Qualitity
TO-252	12	8 ± 0.1	0.315 ± 0.004	330	13	2,500

Marking information

" DR10N170LS " = Part No.

" ***** " = Date Code Marking

Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

