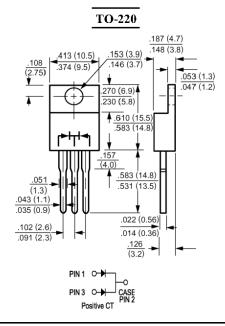
SF161CT THRU SF168CT

GLASS PASSIVATED SUPER FAST RECTIFIER Reverse Voltage – 50 to 600 V Forward Current – 16 A

Features

- · Low forward voltage drop
- Low reverse leakage current
- · Superfast switching time for high efficiency
- High current capability
- · High surge current capability

Mechanical Data


• Case: Molded plastic, TO-220

• Epoxy: UL 94V-0 rate flame retardant

• Terminals: leads solderable per MIL-STD-202

method 208 guaranteed

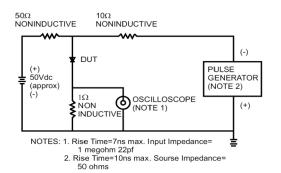
Polarity: As markedMounting Position: Any

Dimensions in inches and (millimeters)

Absolute Maximum Ratings and Characteristics

Ratings at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Parameter	Symbols	SF161CT	SF162CT	SF163CT	SF164CT	SF165CT	SF166CT	SF167CT	SF168CT	Units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	50	100	150	200	300	400	500	600	V
Maximum RMS Voltage	V_{RMS}	35	70	105	140	210	280	350	420	V
Maximum DC Blocking Voltage	V_{DC}	50	100	150	200	300	400	500	600	V
Maximum Average Forward Rectified Current at $T_C = 100^{\circ}\text{C}$	I _(AV)	16								Α
Peak Forward Surge Current, 8.3 mS Single half Sine-wave Superimposed on Rated Load (JEDEC method)	I _{FSM}	125								А
Maximum Forward Voltage at 8 A and 25 °C	V _F	0.95 1.3 1.7					.7	V		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _R	10 500								μΑ
Typical Junction Capacitance 1)	CJ	80 60							pF	
Maximum Reverse Recovery Time 2)	t _{rr}	35 50							ns	
Typical Thermal Resistance 3)	$R_{\theta JC}$	2.5								°C/W
Operating and Storage Temperature Range	T _J , T _{Stg}	-55 to +150								°C


¹⁾ Measured at 1 MHz and applied reverse voltage of 4 VDC.

 $^{^{2)}}$ Reverse recovery test conditions: I_F = 0.5 A, I_R = 1 A, I_{RR} = 0.25 A

³⁾ Thermal resistance from Junction to case per leg mounted on heatsink.

FIG.1- REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

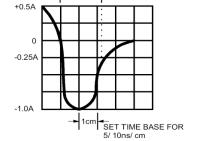
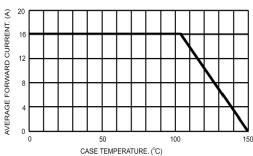



FIG.3- TYPICAL REVERSE CHARACTERISTICS

trr 🛶

FIG.2- MAXIMUM FORWARD CURRENT DERATING CURVE

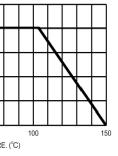


FIG.4- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT PER LEG PEAK FORWARD SURGE CURRENT. (A) TC=125°C 8.3ms Single Half Sine War JEDEC Method 60 NUMBER OF CYCLES AT 60Hz

INSTANTANEOUS REVERSE CURRENT. (µA)

100

10

1.0

20

40 60

FIG.6- TYPICAL FORWARD CHARACTERISTICS

PERCENT OF RATED PEAK REVERSE VOLTAGE. (%)

80 100 120

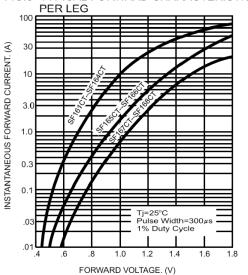
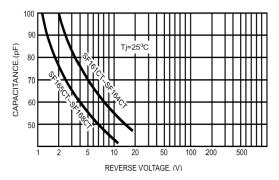



FIG.5- TYPICAL JUNCTION CAPACITANCE PER LEG

