
SD101B, SD101C

Silicon Schottky Barrier Diodes

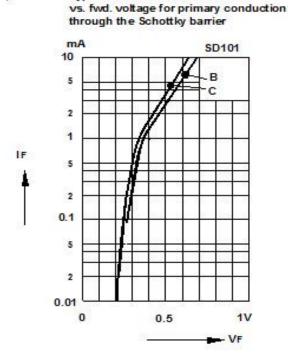
for general purpose applications

The SD101 Series is a metal on silicon Schottky barrier device which is protected by a PN junction guard ring. The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing and coupling diodes for fast switching and low logic level applications.

This diode is also available in MiniMELF case with type designation LL101B, C.

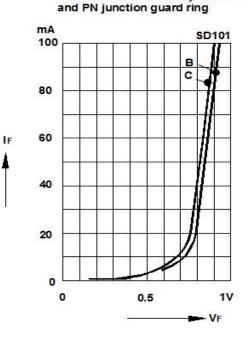
Glass Case DO-35 Dimensions in mm

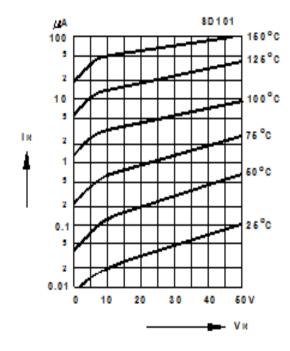
|--|


Parameter		Symbol	Value	Unit			
Peak Reverse Voltage	SD101B SD101C	V _{RRM}	50 40	V			
Non-Repetitive Peak Forward Surge Current at t = 1 s at t = 10 µs		I _{FSM}	50 2	mA A			
Power Dissipation		P _{tot}	400 ¹⁾	mW			
Junction Temperature		Tj	200	°C			
Storage Temperature Range		T _{stg}	- 55 to + 200	°C			
¹⁾ Valid provided the leads direct at the case are kept at ambient temperature.							

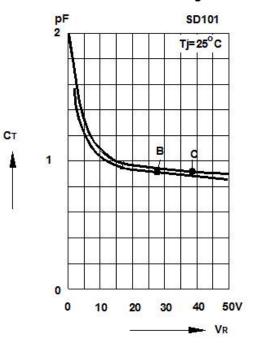
Characteristics at T_a = 25 °C

Parameter		Symbol	Min.	Max.	Unit
Reverse Breakdown Voltage					
at I _R = 10 µA	SD101B	$V_{(BR)R}$	50	-	V
	SD101C		40	-	
Forward Voltage					
at I _F = 1 mA	SD101B		-	0.4	
	SD101C	V _F	-	0.39	V
at I _F = 15 mA	SD101B		-	0.95	
	SD101C		-	0.9	
Reverse Current					
at V _R = 40 V	SD101B	I _R	-	200	nA
at V _R = 30 V	SD101C				
Junction Capacitance					
at V _R = 0 V, f = 1 MHz	SD101B	C _{tot}	-	2.1	pF
	SD101C		-	2.2	-
Reverse Recovery Time					
at $I_F = I_R = 5 \text{ mA}$, recover to 0.1 I_R		t _{rr}	-	1	ns


ĩ.


Typical variation of fwd. current

Typical forward conduction curve of combination Schottky barrier


+

Typical variation of reverse ourrent at various temperatures

Typical capacitance curve as a function of reverse voltage

