High Voltage Silicon Recrifiers Reverse Voltage - 1600 to 1800 V Forward Current - 0.1 A

Features

- Low cost
- Diffused junction
- Low leakage
- Low forward voltage drop
- High current capability

DO-41

Mechanical Data

- Case: Molded plastic, DO-41,
- Terminals: Axial leads, solderable per MIL-STD-202. Method 208.
- Polarity: Color band denotes cathode.
- Mounting Position: Any.

Absolute Maximum Ratings and Characteristics

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz. resistive or inductive load. For capacitive load, derate current by 20%.

Parameter	Symbols	PR1600	PR1800	Units
	Marking	PR1600	PR1800	-
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	1600	1800	V
Maximum RMS Voltage	V _{RMS}	1120	1260	V
Maximum DC Blocking Voltage	V _{DC}	1600	1800	V
Maximum Average Forward Rectified Current 9.5 mmLead Length $T_a = 75$ °C	I _{F(AV)}	0.1		А
Peak Forward Surge Current 8.3ms Single Half-Sine-WaveSuperimposed on Rated Load $T_a = 125 \ ^{\circ}C$	I _{FSM}	20		A
Maximum Instantaneous Forward Voltage at 0.1 A		1.5		V
Maximum Reverse Current $T_a = 25^{\circ}C$ at Rated DC Blocking Voltage $T_a = 100^{\circ}C$	I _R	5 100		μA
Maximum Reverse Recovery Time ¹⁾	t _{rr}	300		nS
Typical Junction Capacitance ²⁾	CJ	20		pF
Typical Thermal Resistance 3)	R _{eja}	35		°C/W
Operating Junction Temperature Range	Tj	- 65 to +150		°C
Storage Temperature Range	T _{Stg}	- 65 to +150		°C

¹⁾ Measured with $I_F = 0.5 \text{ A}$, $I_R = 1 \text{ A}$, $I_{rr} = 0.25 \text{ A}$.

 $^{\rm 2)}$ Measured at 1MHz and applied reverse voltage of 4 V DC.

³⁾Thermal resistance junction to ambient.

