MMFTP3401-HAF

P-Channel Enhancement Mode MOSFET

Features

• Halogen and Antimony Free(HAF), RoHS compliant

1. Gate 2. Source 3. Drain TO-236 Plastic Package

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	-V _{DS}	30	V
Gate-Source Voltage	V _{GS}	± 12	V
Drain Current $T_A = 2$ $T_A = 7$	5°C 0°C -I _D	4 3.2	А
Peak Drain Current ¹⁾	-I _{DM}	27	А
Power Dissipation ²⁾ $T_A = 2$ $T_A = 2$	25°C P _D	1.4 0.9	W
Junction and Storage Temperature Rang	T _J ,T _{stg}	- 55 to + 150	°C

¹⁾ Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 150°C. Ratings are based on low frequency and duty cycles to keep initial T_j = 25°C

 $^{2)}$ The power dissipation P_D is based on T_{J(MAX)} = 150°C.using≤ 10 s Junction to ambient thermal resistance.

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Maximum Thermal Resistance from Juntion to Ambient at t ≤10s ¹⁾ at steady-state ¹⁾²⁾	$R_{ extsf{ heta}JA}$	90 125	°C/W

¹⁾ The value of R_{8JA} is measured with the device mounted on 1in²FR-4 board with 2 oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

 $^{2)}$ The R_{BJA} is the sum of the thermal impedence from junction to lead R_{BJL} and lead to ambient.

Characteristics at $T_j = 25^{\circ}C$ unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage at $-I_D = 250 \ \mu A$	-BV _{DSS}	30	-	-	V
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , -I _D = 250 uA	-V _{GSth}	0.5	-	1.3	V
Drain-Source Leakage Current at $-V_{DS} = 30 V$ at $-V_{DS} = 30 V$, T _j = 55°C	-I _{DSS}		-	1 5	μA
Gate Leakage Current at $V_{GS} = \pm 12 V$	I _{GSS}	-	-	± 100	nA
On state drain current at $-V_{GS}$ = 10 V,V _{DS} = 5 V	-I _{D(ON)}	27	-	-	А
Drain-Source On-State Resistance at $-V_{GS} = 10 \text{ V}$, $-I_D = 4 \text{ A}$ at $-V_{GS} = 4.5 \text{ V}$, $-I_D = 3.7 \text{ A}$ at $-V_{GS} = 2.5 \text{ V}$, $-I_D = 2 \text{ A}$	R _{DS(on)}	- -	- - -	50 60 85	mΩ
Forward Transconductance at -V _{DS} = 5 V, -I _D = 4 A	g _{fs}	-	17	-	S
Diode Forward Voltage at $I_S = 1 A$, $V_{GS}= 0 V$	-V _{SD}	0.7	-	1	V
Maximun Body-Diode Continuous Current	-I _S	-	-	2	Α
Pulsed Body-Diode Current ¹⁾	-I _{SM}	-	-	27	А
Input Capacitance at V_{GS} = 0 V, -V _{DS} = 15 V f = 1 MHz	C _{iss}	-	645	-	pF
Output Capacitance at V_{GS} = 0 V, -V _{DS} = 15 V f = 1 MHz	C _{oss}	-	80	-	pF
Reverse Transfer Capacitance at V_{GS} = 0 V, -V _{DS} = 15 V f = 1 MHz	C _{rss}	-	55	-	pF
Turn-On Delay Time at -V _{GS} = 10 V, -V _{DS} = 15 V, R _L = 3.75 Ω ,R _G = 3 Ω	t _{on}	-	6.5	-	ns
Turn-On Rise Time at -V _{GS} = 10 V, -V _{DS} = 15 V, R _L = 3.75 Ω ,R _G = 3 Ω	tr	-	3.5	-	ns
Turn-Off Delay Time at -V _{GS} = 10 V, -V _{DS} = 15 V, R _L = 3.75 Ω ,R _G = 3 Ω	t _{off}	-	41	-	ns
Turn-Off Fall Time at -V _{GS} = 10 V, -V _{DS} = 15 V, R _L = 3.75 Ω ,R _G = 3 Ω	t _{off}	_	9	-	ns

¹⁾ The power dissipation P_D is based on $T_{J(MAX)}$ = 150°C.using≤ 10 s Junction to ambient thermal resistance.

