MBR1635 THRU MBR1660

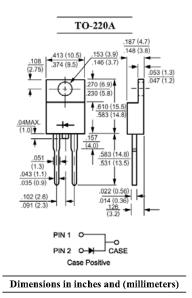
Schottky Barrier Rectifier Reverse Voltage - 35 to 60 V Forward Current - 16 A

Features

- Metal silicon junction, majority carrier conduction
- · Guard ring for overvoltage protection
- · High current capability
- · Low power loss, high efficiency
- · Low forward voltage drop
- For use in low voltage, high frequency inverters, free whelling, and polarity protection applications

Mechanical Data

• Case: Molded plastic, TO-220A


• Epoxy: UL 94V-0 rate flame retardant

• Terminals: Leads solderable per MIL-STD-202

Method 208 guaranteed

Polarity: As marked

Mounting position: Any

Maximum Ratings and Electrical Characteristics

Ratings at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Parameter	Symbols	MBR1635	MBR1645	MBR1650	MBR1660	Units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	35	45	50	60	V
Maximum RMS Voltage	V_{RMS}	24	31	35	42	V
Maximum DC Blocking Voltage	V_{DC}	35	45	50	60	V
Maximum Average Forward Rectified Current $T_C = 125 ^{\circ}C$	I _{F(AV)}	16			А	
Peak Repetitive Forward Current at T_C = 125 °C (Rated V_R , Sq. Wave, 20 KHz)	I _{FRM}	32				А
Peak Forward Surge Current, 8.3 ms Single Half Sine Wave Superimposed on Rated Load (JEDEC Method)	I _{FSM}	150			Α	
Peak Repetitive Reverse Current at tp = 2 μs, 1 KHz	I _{RRM}	1 0.5		.5	Α	
Maximum Forward Voltage $^{1)}$ at I_F = 16 A, T_C = 25 $^{\circ}$ C at I_F = 16 A, T_C = 125 $^{\circ}$ C	V _F	0.63 0.57			75 65	٧
Maximum Reverse Current at Rated DC at $T_C = 25$ °C Blocking Voltage at $T_C = 125$ °C	I _R	0.2 40		5	1 50	
Voltage Rate of Change (Rated V_R)	dv/dt	10,000				V/µs
Typical Thermal Resistance	$R_{ heta JC}$	1.5			°C/W	
Operating Temperature Range	T _J	- 55 to + 150				°C
Storage Temperature Range	T _{Stg}	- 55 to + 175				°C

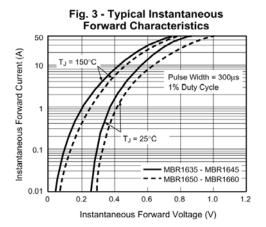
¹⁾ Pulse test: 300 µs pulse width, 1% duty cycle

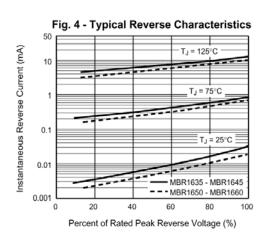
Fig. 1 - Forward Current Derating Curve

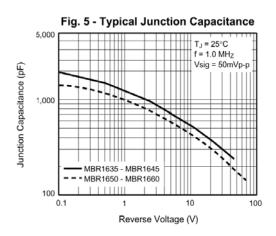
20

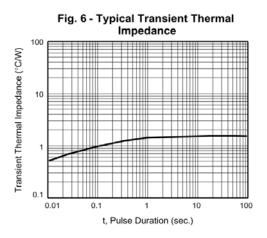
16

16


20


50


100


150

Case Temperature (°C)

